Exercise 68

Suppose f is differentiable on \mathbb{R} and α is a real number. Let $F(x)=f\left(x^{\alpha}\right)$ and $G(x)=[f(x)]^{\alpha}$. Find expressions for (a) $F^{\prime}(x)$ and (b) $G^{\prime}(x)$.

Solution

Take the derivative of $F(x)$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x}\left[f\left(x^{\alpha}\right)\right] \\
& =f^{\prime}\left(x^{\alpha}\right) \cdot \frac{d}{d x}\left(x^{\alpha}\right) \\
& =f^{\prime}\left(x^{\alpha}\right) \cdot\left(\alpha x^{\alpha-1}\right)
\end{aligned}
$$

Take the derivative of $G(x)$.

$$
\begin{aligned}
G^{\prime}(x) & =\frac{d}{d x}\left\{[f(x)]^{\alpha}\right\} \\
& =\alpha[f(x)]^{\alpha-1} \cdot \frac{d}{d x}[f(x)] \\
& =\alpha[f(x)]^{\alpha-1} \cdot f^{\prime}(x)
\end{aligned}
$$

